- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Dai, Xianzhe (2)
-
Wei, Guofang (2)
-
Connell, Chris (1)
-
Honda, Shouhei (1)
-
N´u˜nez-Zimbr´on, Jes´us (1)
-
Pan, Jiayin (1)
-
Perales, Raquel (1)
-
Su´arez-Serrato, Pablo (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We establish two surprising types of Weyl’s laws for some compact /Ricci limit spaces. The first type could have power growth of any order (bigger than one). The other one has an order corrected by logarithm similar to some fractals even though the space is 2-dimensional. Moreover the limits in both types can be written in terms of the singular sets of null capacities, instead of the regular sets. These are the first examples with such features for spaces. Our results depend crucially on analyzing and developing important properties of the examples constructed in Pan and Wei [Geom. Funct. Anal. 32 (2022), pp. 676–685], showing them isometric to the -Grushin halfplanes. Of independent interest, this also allows us to provide counterexamples to conjectures in Cheeger and Colding [J. Differential Geom. 46 (1997), pp. 406–480] and Kapovitch, Kell, and Ketterer [Math. Z. 301 (2022), pp. 3469–3502].more » « less
-
Connell, Chris; Dai, Xianzhe; N´u˜nez-Zimbr´on, Jes´us; Perales, Raquel; Su´arez-Serrato, Pablo; Wei, Guofang (, Journal of the London Mathematical Society)null (Ed.)
An official website of the United States government
